
Part 2 of 2:

Scripting and

condor

examples

SCRIPTING AND TEXT

MANIPULATION (AND CONDOR!)
DA N I E L J UM P E R & M I KE B E AUM I E R

 Broad and shallow again!

 Focused on providing varied examples for your reference

SCOPE OF TALK

8/4/2014 Computation Tutorial: Scripts and Condor 2

Text Manipulation

Regular Expressions

 sed

awk

Scripts

Condor – batch program running on many computers

Bash – More simple, easy to use command line tools

Perl – Higher level; more structured programming

OVERVIEW

Part 1 Last Week

8/4/2014 Computation Tutorial: Scripts and Condor 3

 Lets you run many instances of a program over many computers

 DISCLAIMER: I am giving you a l imited scope of information
about using condor. There are many other things you can do that
I do not tell you about. Investigate for yourself and ask others!

 To submit jobs, you need:
 .cmd file – program or command you want to execute

 .job file – specify parameters to condor system to run jobs

 condor_submit (or script!) – submit .job files to run on condor

 After you have submitted jobs:
 condor_status –submitters Check the status of jobs per user

 alias mycondorstatus 'date; condor_status -submitters |
grep danielj'

 condor_q more detailed information about individual jobs (flag
options available)

 condor_rm danielj remove jobs from the queue

 condor_release danielj re-submit jobs that are held

 See scripting examples for more information on submitting jobs!

8/4/2014 Computation Tutorial: Scripts and Condor 4

CONDOR

Two of many possible scripting languages

Bash: quick and simple scripts

Simple and limited structure

Naturally accepts command line commands

Perl: more potential for complex scripts or

programs

Better higher level programming features

Can still do simple things, but is more like a full

programming language

8/4/2014 Computation Tutorial: Scripts and Condor 5

SCRIPTING: BASH AND PERL

 Bash is a shell (terminal) environment

 Syntax is similar to command line (most things you can do in a bash script you
can do on the command line with ; separating commands)

 NOTE: rcf uses csh instead of bash for the shell. They are very similar with minor
differences in syntax

 You can directly execute command line commands in bash

 Simply type a command as you would in the command line. Each command on a
new line

 Alternately, use ` (the non-shifted ~ key) to execute a command within another line
of the script

 Eg: variable=`ls | tail 1`

 Define what scripting language you’re using in the first l ine

 #!/bin/bash

 Whitespace doesn’t matter much. Star t new commands on new l ines

 Use \ to continue a single command over multiple lines

 Variables:

 No types are defined

 Define a variable with variable=... (no space before =)

 Reference a variable with $variable or ${variable}

 8/4/2014 Computation Tutorial: Scripts and Condor 6

BASH BASICS

 3 Examples:

 hadd_merger: a script to merge many root files via hadd commands

 Repository: offline/analysis/danielj/example_code/scripts/hadd_merger

 simple_condor: a very basic example of a script submitting a few jobs
to condor

 Repository: offline/analysis/danielj/example_code/scripts/simple_condor

 advanced_condor: a more complex script submitting many programs
divided between a few condor jobs

 Repository:
offline/analysis/danielj/example_code/scripts/advanced_condor

 Accessing the repository:

 https://www.phenix.bnl.gov/viewvc/viewvc.cgi/phenix/

 Checking out a copy of the code:

 cvs co –d <local directory name> <repository path to check out>

 cvs co –d hadd_example
offline/analysis/danielj/example_code/scripts/hadd_merger

8/4/2014 Computation Tutorial: Scripts and Condor 7

BASH EXAMPLES

https://www.phenix.bnl.gov/viewvc/viewvc.cgi/phenix/
https://www.phenix.bnl.gov/viewvc/viewvc.cgi/phenix/

 Purpose: look for many root fi les in a directory (more fi les than the
hadd command accepts) and use multiple hadd commands to combine
them

 Highlighted techniques:
 Input arguments

 Pass arguments separated by spaces when executing the script:
 EG: $> script.sh arg1 arg2 arg3

 $1, $2, … , $n

 Set a default value for an argument if it’s not present:
 ${n:-<value>} for example: ${1:-3} or ${1:-”test string”}

 Do math in bash with $((<math here>)) or $[<math here>]

 eg. $((1+2)) or $[$var*3]

 Using ` ` to execute command line commands

 Defining variables (basename command)

 Looping over output of a command (find command)

 One (of multiple) possible for loop syntax

 Conditional (if) syntax

 -gt greater than, –eq equals, -ge greater or equal, ……

 Disclaimer: make sure to change the hard coded scratch directory to
your space!

8/4/2014 Computation Tutorial: Scripts and Condor 8

BASH: HADD EXAMPLE
o f f l i n e / a n a l y s i s / d a n i e l j / ex a m p l e _ c o d e / s c r i p t s / h a d d _ m e r g e r

 Purpose: the most basic version of submitting jobs to condor

 Highlighted techniques:
 Use very simple script makefilelist.sh to create a list of files

 run_condor.sh is a simple script that, when executed, loops over files in a
list and submits a job to condor for each one

 Passing arguments to condor
 Set parameters in condor.job OR with –a “...” flag for condor_submit in the

script
 “Executable” specifies what to execute (condor.cmd in this case)

 “Initialdir” specifies from which directory to call execution

 “Arguments” variable is what is passed to condor.cmd when executed

 condor.job defines condor parameters
 “Notification” and “Notify_User” can be used to email you status of the jobs

 condor.cmd is what is executed for each job (in this case, it’s a very
simple bash script to read one file and output to another)

 DISCLAIMER: again, make sure you change paths (and my email
address) that are coded in several of the fi les)

8/4/2014 Computation Tutorial: Scripts and Condor 9

BASH: SIMPLE_CONDOR EXAMPLE
o f f l i n e / a n a l y s i s / d a n i e l j / ex a m p l e _ c o d e / s c r i p t s / s i m p l e _ c o n d o r

 Purpose: run on condor with many program executions split in
batches between several condor jobs.

 Highlighted techniques:

 fake_input_files/generate_files.sh – a simple script that generates text
files

 run_condor.sh dynamically generates a condor.cmd file to match how
many executions you want to run per job

 It decides how many arguments to pass to condor.cmd and modifies the text of
condor.cmd to use the arguments and do the proper number of executions

 When putting text in condor.cmd be, you have to be very careful about
escaping characters with \

 condor.cmd executes root macros with input and output files passed as
arguments

 Note proper syntax of escape characters

 DISCLAIMER: as usual, you have to modify paths and such if you
want to check out the code and run it yourself

8/4/2014 Computation Tutorial: Scripts and Condor 10

BASH: ADVANCED_CONDOR EXAMPLE
o f f l i n e / a n a l y s i s / d a n i e l j / ex a m p l e _ c o d e / s c r i p t s / a d v a n c e d _ c o n d o r

WHAT IS PERL

 Perl is an interpreted, dynamic, high level programming

language, well suited for quick and dirty scripts, as well as

sophisticated software solutions

 Interpreted: statements are executed line by line by an interpreter,

instead of being parsed and compiled into a binary, executable

machine-code.

 Dynamic: data structures do not have a fixed size, and can be resized

as needed. Code can crash when you run out of available memory

 High Level: The user does not have to concern themselves with direct

memory management (i.e. C/C++), programming syntax is heavily

abstracted from what is actually executed by the processor.

11 8/4/2014 Computation Tutorial: Scripts and Condor

Perl slides from

Mike Beaumier

THE ANATOMY OF A PERL SCRIPT

Perl is an extremely flexible and fluid scripting language. There

are many ways to format a perl script. The convention presented

here is not the “only” way to do it, but I think its less error

prone.

Follow along with “Example 1” available from CVS:

cvs co offline/analysis/beaumim/tutorials/perl

A Perl script, from top-to-bottom, contains the following pieces:

 The “shebang” – First line of the script: #! /usr/bin/perl

 Extra libraries / Parsing Rules: use strict;

 Function prototypes

 Body

 Function Definitions

12 8/4/2014 Computation Tutorial: Scripts and Condor

THE ANATOMY OF A PERL SCRIPT

Line 1 – The shebang – tells the interpreter where the perl executable lives

Line 3 – Additional rules – this one is “strict”

Line 4 – A Subroutine prototype or definition

The rest of the script constitutes the “body” and is simply just commands that are

executed in order. One may organize the control flow using subroutines objects, or

other scripts that are included after the shebang.

13 8/4/2014 Computation Tutorial: Scripts and Condor

HOW IS PERL USED AT PHENIX

 General purpose scripting language

 Text parsing

 Online Data Production management

 Database interface and management

 Automation

Perl is often referred to as the “Swiss Army Chainsaw” of

programming/scripting languages because of its versatility and

wide support for a huge number of specific libraries and

packages. The Perl philosophy might best be summarized as

“There’s more than one way to skin a cat”.

14 8/4/2014 Computation Tutorial: Scripts and Condor

BASIC PERL DATA STRUCTURES

Data structure “types” are indicated with sigils – a prefix that is
either “$”, “@”, or “%”. Commented lines begin with “#”.

See Example 1

 Scalar – “$”
 Can be a floating point, integer, string or interpreted string. In

interpreted strings, certain special characters need to be “escaped” with
a “\” character.

 Array – “@”
 A collection of scalar variables. Each entry will be interpreted as a

number or a string, depending on how it was defined or entered into the
array.

 Hash – “%”
 A data structure which pairs a lookup key value, with a mapped value

 All about hashes:
http://www.cs.mcgill.ca/~abatko/computers/programming/perl/howto/
hash/

15 8/4/2014 Computation Tutorial: Scripts and Condor

BASIC PERL DATA STRUCTURES

16 8/4/2014 Computation Tutorial: Scripts and Condor

“ADVANCED” PERL

 References (not covered, similar to pointers in C++)

 Automatically Created Variables
 “$_” and “@_”

 $_ is a scalar variable or variable reference

 @_ is an array

 Control Structures
 Subroutine

 A function. Can take a variable number of arguments, which are stored in the
automatically defined variable “@_”

 Loops

 “for”, “foreach”

 “while”, “until”, “do..while”

 Control statements: “next”, “last”, “continue”, “redo”, “ goto”

 http://www.tutorialspoint.com/perl/perl_loops.htm

 Recursion (not covered)

 “if”, “else”, “elsif” (covered in regex portion of talk). Not covered: “unless”

 Objects (not covered)

 Objects (not covered)

 File I/O (see example 2)

17 8/4/2014 Computation Tutorial: Scripts and Condor

“ADVANCED” PERL - SUBROUTINE

18 8/4/2014 Computation Tutorial: Scripts and Condor

“ADVANCED” PERL – CONTROL LOOPS

19

“while”, “until”, “do..while” also exist, but aren’t covered here.

Loop iterations may be modified with control statements: “next”,

“last”, “continue”, “redo”, “goto”

8/4/2014 Computation Tutorial: Scripts and Condor

REGEX EXAMPLE WITH PERL

 See folder called “example_2” in the CVS checkout package to

follow along.

 In general – you will

1. Read a file, or an array of strings, with the intention of matching,

in whole (or part) pieces of the string to mine data

2. While reading through a file, check if the regular expression is a

match, with:

if($my_string =~ /$regular_expression_string/m) { # do stuff }

*caveat – any occurrence of “/” must be escaped with a “\” due to the

match syntax in Perl already reserving “/”.

20

SCENARIO 1: PRODUCTION JOBS ARE

FAILING…

 You’re in charge of producing physics data from raw data, and
your jobs are failing. You want to know how many jobs have
failed.

 Unfortunately, all log, error, output, shell scripts and other
production related files are in the same directory, and it’s a
mess.

 You need to do the following:

1. Sort out the contents of the log area

2. Figure out how many files have failed production

3. Do further analysis of logs for production files which have not
failed.

See
offline/analysis/beaumim/tutorials/perl/example_2/parse_logs.pl

21

SCENARIO 1: PRODUCTION JOBS ARE

FAILING…

22

Use Regular

Expression

Matching to

Filter Log Files

By Type

Add all entries in a

directory to an array

23

SCENARIO 1: PRODUCTION JOBS ARE FAILING…

Here, we open each file, and read through it, testing each line for possible errors in

reading a PRDFF. We can also sort log files by “good” or “bad”.

SCENARIO 2: THERE MAY BE

BOTTLENECKS

 This was a real problem during the Run 12 production – many
production jobs were failing, because of bottlenecks in the
production chain.

 Producing physics data had a few steps: queuing PRDFFs in
cluster, copying PRDFFs to cluster, and running production
macro over PRDFFs.

 No information was recorded about this process, other than
some time-stamps buried in tens of millions of lines of log -
file output.

 We needed to determine where bottlenecks in the chain were,
by extracting these time stamps from log files, and studying
the time distributions for each step.

See of fl ine/analysis/beaumim/tutorials/perl/example_2/parse_logs.pl

24

SCENARIO 2: THERE MAY BE

BOTTLENECKS

25

Extract Run

Number and

Segment

Number From

Filename

Extract and

convert time

stamps to

seconds

Use extracted data for

useful calculations!

ANOTHERUSAGE EXAMPLE OF PERL IN

ANALYSIS

 Mike Beaumier developed a specific Perl tool to automate the

creation of relevant bash scripts, condor job files, and

environment configuration for cases where a single root script

is called with a large variety of arguments.

 Check out a copy from CVS to play with (with working

example, README, etc) here:

 offline/analysis/beaumim/condor

 And send suggestions / bugs / questions to:

 Mike Beaumier – michael.beaumier@gmail.com

26

mailto:michael.beaumier@gmail.com

END

8/4/2014 Computation Tutorial: Scripts and Condor 27

